Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations
نویسندگان
چکیده
In this paper we present Fourier type error analysis on the recent four discontinuous Galerkin methods for diffusion equations, namely the direct discontinuous Galerkin (DDG) method (Liu and Yan in SIAM J. Numer. Anal. 47(1):475–698, 2009); the DDG method with interface corrections (Liu and Yan in Commun. Comput. Phys. 8(3):541–564, 2010); and the DDG method with symmetric structure (Vidden and Yan in SIAM J. Numer. Anal., 2011); and a DG method with nonsymmetric structure (Yan, A discontinuous Galerkin method for nonlinear diffusion problems with nonsymmetric structure, 2011). The Fourier type L2 error analysis demonstrates the optimal convergence of the four DG methods with suitable numerical fluxes. The theoretical predicted errors agree well with the numerical results.
منابع مشابه
Discontinuous Galerkin Method for Fractional Convection-Diffusion Equations
We propose a discontinuous Galerkin method for fractional convection-diffusion equations with a superdiffusion operator of order α(1 < α < 2) defined through the fractional Laplacian. The fractional operator of order α is expressed as a composite of first order derivatives and a fractional integral of order 2 − α. The fractional convection-diffusion problem is expressed as a system of low order...
متن کاملMultigrid Optimization for Space-Time Discontinuous Galerkin Discretizations of Advection Dominated Flows
The goal of this research is to optimize multigrid methods for higher order accurate space-time discontinuous Galerkin discretizations. The main analysis tool is discrete Fourier analysis of twoand three-level multigrid algorithms. This gives the spectral radius of the error transformation operator which predicts the asymptotic rate of convergence of the multigrid algorithm. In the optimization...
متن کاملSuperconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension
In this paper, we study the superconvergence property for the discontinuous Galerkin (DG) and the local discontinuous Galerkin (LDG) methods, for solving one-dimensional time dependent linear conservation laws and convection-diffusion equations. We prove superconvergence towards a particular projection of the exact solution when the upwind flux is used for conservation laws and when the alterna...
متن کاملThe Discontinuous Galerkin Method with Diffusion
We propose a way of extending the discontinuous Galerkin method from pure hyperbolic equations to convection-dominated equations with an 0(h) diffusion term. The resulting method is explicit and can be applied with polynomials of degree n > 1 . The extended method satisfies the same 0(hn+ll2) error estimate previously established for the discontinuous Galerkin method as applied to hyperbolic pr...
متن کاملLocal Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives
In this paper we review the existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 52 شماره
صفحات -
تاریخ انتشار 2012